
TDA Progress Report 42-123

N96- 16690

November 15, 1995 I ""

On the Design of Turbo Codes

D. Divsalar and F. Pollara

Communications Systems and Research Section

In this article, we design new turbo codes that can achieve near-Shannon-limit

performance. The design criterion for random interleavers is based on maximizing

the effective free distance of the turbo code, i.e., the minimum output weight of
codewords due to weight-2 input sequences. An upper bound on the effective free

distance of a turbo code is derived. This upper bound can be achieved if the feedback

connection of convolutional codes uses primitive polynomials. We review multiple

turbo codes (parallel concatenation of q convolutional codes), which increase the

so-called "interleaving gain" as q and the interleaver size increase, and a suitable

decoder structure derived from an approximation to the maximum a posteriori

probability decision rule. We develop new rate 1/3, 2/3, 3/4, and 4/5 constituent

codes to be used in the turbo encoder structure. These codes, for from 2 to 32

states, are designed by using primitive polynomials. The resulting turbo codes have
rates b/n, b=l, 2, 3, 4, and n=2, 3, 4, 5, 6 and include random interleavers for better

asymptotic performance. These codes are suitable for deep-space communications

with low throughput and for near-Earth communications where high throughput is
desirable. The performance of these codes is within 1 dB of the Shannon limit at a

bit-error rate of 10 -6 for throughputs from 1/15 up to 4 bits/s/Hz.

I. Introduction

Coding theorists have traditionally attacked the problem of designing good codes by developing codes
with a lot of structure, which lends itself to feasible decoders, although coding theory suggests that

codes chosen "at random" should perform well if their block sizes are large enough. The challenge
to find practical decoders for "almost" random, large codes has not been seriously considered until

l_c_,_,y, l _,._._ _,,_ cxcltmg _A p_H_lly imnnrtant development in codin_ theory in recent

years has been the dramatic announcement of "turbo codes" by Berrou et al. in 1993 [7]. The announced
performance of these codes was so good that the initial reaction of the coding establishment was deep

skepticism, but recently researchers around the world have been able to reproduce those results [15,19,8].
The introduction of turbo codes has opened a whole new way of looking at the problem of constructing

good codes [5] and decoding them with low complexity [7,2].

Turbo codes achieve near-Shannon-limit error correction performance with relatively simple component

codes and large interleavers. A required Eb/No of 0.7 dB was reported for a bit-error rate (BER) of 10 -S

for a rate 1/2 turbo code [7]. Multiple turbo codes (parallel concatenation of q > 2 convolutional codes)

and a suitable decoder structure derived from an approximation to the maximum a posteriori (MAP)

probability decision rule were reported in [9]. In [9], we explained for the first time the turbo decoding

99

schemeformultiplecodesandits relationtotheoptimumbit decisionrule,andwefoundrate1/4turbo
codeswhoseperformanceiswithin0.8dBofShannon'slimit at BER=10-5.

In thisarticle,we(1)designthebestcomponentcodesforturbocodesofvariousratesbymaximizing
the "effectivefreedistanceof the turbocode,"i.e.,the minimumoutputweightof codewordsdueto
weight-2inputsequences;(2)describea suitabletrellisterminationrulefor b/n codes; (3) design low

throughput turbo codes for power-limited channels (deep-space communications); and (4) design high-

throughput turbo trellis-coded modulation for bandwidth-limited channels (near-Earth communications).

II. Parallel Concatenation of Convolutional Codes

The codes considered in this article consist of the parallel concatenation of multiple (q >_ 2) con-

volutional codes with random interleavers (permutations) at the input of each encoder. This extends

the original results on turbo codes reported in [7], which considered turbo codes formed from just two

constituent codes and an overall rate of 1/2.

Figure 1 provides an example of parallel concatenation of three convolutional codes. The encoder

contains three recursive binary convolutional encoders with ml, m2, and ma memory cells, respectively.

In general, the three component encoders may be different and may even have different rates. The first

component encoder operates directly (or through 7rl) on the information bit sequence u = (_tl,..., UN)

of length N, producing the two output sequences x0 and xl. The second component encoder operates

on a reordered sequence of information bits, u2, produced by a permuter (interleaver), rr2, of length N,

and outt)uts the sequence x2. Similarly, subsequent component encoders operate oi1 a reordered sequence

of inforlnation bits. The interleaver is a pseudoraudom block scrambler defined by a permutation of N

elements without repetitions: A complete bh)ck is read iuto the the interleaver and read out in a specified

(fixed) random order. The same interleaver is used repeatedly for all subsequent blocks.

Figure 1 shows an example where a rate r = 1/n = 1/4 code is generated by three component codes

with memory ml = m2 = m:_ = m = 2, producing the outputs x0 = u, xl = u • 91/9o, x2 = u2 • 91/9o,

and x3 = u3.91/9o (here 7rl is assumed to be an identity, i.e., no pernmtation), where the gene.rator

polynomials 9o and g_ have octal representation (7)oa_Z and (5)o_t_z, respectively. Note that various code

rates can be obtained by proper puncturing of Xl, x2, x3, and even x0 (for an example, see Section V).

We use the encoder in Fig. 1 to generate an (n(N + m), N) block code, where the m tail bits of code 2

and code 3 are not transmitted. Since the component encoders are recursive, it is not sufficient to set
the last m information bits to zero in order to drive the encoder to the all-zero state, i.e., to tc.r'miTmtc

the trellis. The termination (tail) sequence depends on the state of each component encoder after N

bits, which makes it impossible to terminate all component encoders with m predetermined tail bits.
This issue, which had not been resolved in the original turbo code implementation, can be dealt with

by applying a simple method described in [8] that is valid for any number of component codes. A more

complicated method is described in [18].

A design for constituent convolutional codes, which are not necessarily optimum convolutional codes,

was originally reported in [5] for rate 1/7z codes. In this article, we extend those results to rate b/'_t

co<les. It was suggested (without proof) in [2] that good random codes are obtained if 9, is a primitive

l)olynomial. This suggestion, used in [5] to obtain "good" rate 1/2 constituent codes, will be use<t in this

artich; to obtain "good" rate 1/3, 2/3, 3/4, and 4/5 constituent codes. By "good" codes we mean codes

with a maximum effective free distance d+f, those codes that maximize the minimum output weight for

weight-2 input sequences, as discussed in [9], [13], and [5] (because this weight tends to dominate the

perforulance characteristics over the region of interest).

lO0

ENCODER 1

u2

u3

ENCODER 3

Fig. 1. Example of encoder with three codes.

==x3

III. Design of Constituent Encoders

As discussed in the previous section, maximizing the weight of output codewords corresponding to

weight-2 data sequences gives the best BER performance for a moderate bit signal-to-noise ratio (SNR)

as the random interleaver size N gets large. In this region, the dominant term in the expression for bit

error probability of a turbo code with q constituent encoders is

Pb _ Nq_ 1 .1,2

where dP,2 is the minimum parity-weight (weight due to parity checks only) of the codewords at the

output of the jth constituent code due to weight-2 data sequences, and/3 is a constant independent of

N. Define dj,2 = dP,2 + 2 as the minimum output weight including parity and information bits, if the jth

constituent code transmits the intbrmation (systematic) bits. Usually one constituent code transmits the

information bits (j = 1), and the information bits of others are punctured. Define de/ q P=)-:Q=I dj,2 + 2 as

the effective free distance of the turbo code and 1/N q-1 as the "interleaver's gain." We have the following

bound on d_ for any constituent code.

Theorem 1. For any r = b/(b + 1) recursive systematic convolutional encoder with generator matrix

hi(D)

ho(D)

h2(D)

c = ho(D)
Ibxb

hb(D)

ho(D)

101

where Ibxb is a b x b identity matrix, deg[hi(D)] < m, hi(D) 7i h0(D), i = 1, 2,..., b, and ho(D) is a

primitive polynomial of degree m, the following upper bound holds:

2rn,-- 1

< [T j+ 2

Proof. In the state diagram of any recursive systematic convolutional encoder with generator matrix

G, there exist at least two nonoverlapping loops corresponding to all-zero input sequences• If ho(D) is a

primitive polynomial, there are two loops: one corresponding to zero-input, zero-output sequences with

branch length one, and the other corresponding to zero-input but nonzero-output sequences with branch

length 2 m - 1, which is the period of maximal length (ML) linear feedback shift registers (LFSRs) [14]

with degree m. The parity codeword weight of this loop is 2 m-l, due to the balance property [14] of ML

sequences. This weight depends only on the degree of the primitive polynomial and is independent of

hi(D), due to the invariance to initial conditions of ML LFSR sequences. In general, the output of the

encoder is a linear function of its input and current state. So, for any output we may consider, provided

it depends on at least one component of the state and it is not ho(D), the weight of a zero-input loop is

2 m-l, by the shift-and-add property of ML LFSRs.

A

A
J

Ul i
)
B

, h20

hlO

h00

alO

(

h21

hll

h22

h12

h02 __

21

a12

)_= /\

,.x 2
h23

x 1
h13

-4- _03

)
Fig. 2. Canonical representation of a rate (b + 1)/b encoder (b = 2, m = 3).

Consider the canonical representation of a rate (b + 1)/b encoder [20] as shown in Fig. 2 when the
k k .. kswitch is in position A. Let S k (D) be the state of the encoder at time k with coefficients So, S1, •, Sin-l,

where the output of the encoder at time k is

b

k-1

X -=- Sm_ 1 + _--i uki hi,m

i=1

(I)

]'he state transition for input u_,..., Ubk at time k is given by

ES]Sk(D) = u_h.{(D) + DSk-I(D) ,nod ho(D)

From the all-zero state, we can enter tile zero-input loop with nonzero input symbols ut,

102

(2)

• '',Ub at state

b

SI(D) = E uihi(D) mod ho(D)
i=1

(3)

From the same nonzero input symbol, we leave exactly at state S2"-I(D) back to the all-zero state,
where S 2'"- 1(D) satisfies

SI(D) = DS2'"-I(D) mod ho(D) (4)

i.e., $2'"-1(D) is the "predecessor" to state SI(D) in the zero-input loop. If the most significant bit of
2"- 1

the predecessor state is zero, i.e., Sin_ 1 = 0, then the branch output for the transition from $2"-1(D)

to SI(D) is zero for a zero-input symbol. Now consider any weight-1 input symbol, i.e., uj = 1 for j = i

and uj = 0 for j _ i, j = 1, 2,..., b. The question is: What are the conditions on the coefficients hi(D)

such that, if we enter with a weight-1 input symbol into the zero-input loop at state SI(D), the most
significant bit of the "predecessor" state S2"-I(D) is zero. Using Eqs. (3) and (4), we can establish that

h_o + hi,m = 0 (5)

Obviously, when we enter the zero-input loop from the all-zero state and when we leave this loop to go

back to the all-zero state, we would like the parity output to be equal to 1. From Eqs. (1) and (5), we
require

hi0 = 1]

fhi,m = 1

(6)

With this condition, we can enter the zero-input loop with a weight-1 symbol at state SI(D) and then
leave this loop from state $2""-1(D) back to the all-zero state, for the same weight-1 input. The parity

weight of the codeword corresponding to weight-2 data sequences is then 2m-1 + 2, where the first term

is the weight of the zero-input loop and the second term is due to the parity bit appearing when entering

and leaving the loop. If b = 1, the proof is complete, and the condition to achieve the upper bound is

given by Eq. (6). For b = 2, we may enter the zero-input loop with u = 10 at state S I(D) and leave the
' 1-......... ;_, - m _ s _f,_ cJ(r)_ If w_ can choose SJ(D "}such that the outputl'JO l) to bllU ze].-o 5babt:::: vvlv1_ u : v_ _u v...v k--] , ,

weight of the zero-inputloop from SI(D) to SJ(D) isexactly 2m-i/2, then the output weight of the

zero-input loop from SJ+I(D) to $2"-1(D) is exactly 2m-1/2, and the minimum weight of codewords

corresponding to some weight-2 data sequences is

2 m- /

--+2
2

In general, for any b, if we extend the procedure for b = 2, the minimum weight of the codewords

corresponding to weight-2 data sequences is

2m--I

L_-U- j + 2 (7)

where Lxj is the largest integer less than or equal to z. Clearly, this is the best achievable weight for the

minimum-weight codeword corresponding to weight-2 data sequences. This upper bound can be achieved

103

if the maximum run length of l's (m) in the zero-input loop does not exceed L2m- 1/bj. If m > L2m- 1 �b J,

then the minimum weight of the codewords corresponding to weight-2 data sequences will be strictly less

than [2m-1/bJ + 2.

The run property of ML LFSRs [14] can help us in designing codes achieving this upper bound.

Consider only runs of l's with length l for 0 < I < m - 1; then there are 2m-2-1 runs of length l, no runs

of length m - 1, and only one run of length m. C!

Corollary 1. For any r = bin recursive systematic convolutional code with b inputs, b systematic

outputs, and n - b parity output bits using a primitive feedback generator, we have

_ b)2m-1
_<k b J+ - b) (8)

Proof. The total output weight of a zero-input loop due to parity bits is (n - b)2 M-1. In this zero-

input loop, tile largest minimum weight (due to parity bits) for entering and leaving the loop with any

weight-1 input symbol is [(n - b)2M-1]/b. The output weight due to parity bits for entering and leaving

the zero-input loop (both into and from the all-zero state) is 2(n - b). _1

There is an advantage to using b > 1, since the bound in Eq. (8) for rate b/bn codes is larger than the

bound for rate 1In codes. Examples of codes are found that meet the upper bound for b/bn codes.

A. Best Rate b/b + 1 Constituent Codes

We obtained the best rate 2/3 codes as shown in Table 1, where d2 = dp + 2. The minimum-weight

eodewords corresponding to weight-3 data sequences are denoted by d3, dm,_ is the minimum distance

of the code, and k = m + 1 in all the tables. By "best" we mean only codes with a large d2 for a given
m that result in a maximum effective free distance. We obtained the best rate 3/4 codes as shown in

Table 2 and the best rate 4/5 codes as shown in Table 3.

Table 1. Best rate 2/3 constituent codes.

k Code generator d2 d3 d,,Li,

3 ho = 7 hi = 3 h2 = 5 4 3 3

4 h0 = 13 hi = 15 h2 = 17 5 4 4

5 ho = 23 hi = 35 h2 = 27 8 5 5

h0 = 23 hi = 35 h2 = 33 8 5 5

6 h0 =45 hi =43 h2 =61 12 6 6

Table 2. Best rate 3/4 constituent codes.

Code generator d2 d3 drain

3 ho = 7 hi = 5 h2 = 3 h3 = 1 3 3 3

ho = 7 hi = 5 h2 = 3 h3 = 4 3 3 3

ho = 7 hi = 5 h2 = 3 h3 = 2 3 3 3

4 ho = 13 ht = 15 h2 = 17 h3 = 11 4 4 4

5 h0 = 23 h l = 35 h,) = 33 ha = 25 5 4 4

ho = 23 h.l = 35 h2 = 27 h3 = 31 5 4 4

ho = 23 h,1 = 35 h2 = 37 h3 = 21 5 4 4

ho = 23 hi = 27 h2 = 37 h3 = 21 5 4 4

104

Table 3. Best rate 415 constituent codes.

k Code generator d2 d3 dm_n

4 ho = 13 hi = 15 h2 = 17 h3 = 11 h4 = 7 4 3 3

h0 = 13 hi = 15 h2 = 17 h3 = 11 h4 = 5 4 3 3

5 ho = 23 hi = 35 h2 = 33 h3 = 37 h4 = 31 5 4 4

ho = 23 hl = 35 h2 = 27 h3 = 37 h4 = 31 5 4 4

ho = 23 h] = 35 h2 = 21 h3 = 37 ha = 31 5 4 4

x0

"-=-1-_ D t-

_Y11

(+)----

g21

)---(
g22

go3

'g13

, g23

_ x2

Fig. 3. Rate 1In code.

B. Trellis Termination for b/n Codes

Trellis termination is performed (for b = 2, as an example) by setting the switch shown in Fig. 2

in position B. The tap coefficients aio,".,a_,m-1 for i = 1,2,.-. ,b can be obtained by repeated use of

Eq. (2) and by solving the resulting equations. The trellis can be terminated in state zero with at least

m/b and at most m clock cycles. When Fig. 3 is extended to multiple input bits (b parallel feedback shift

registers), a switch should be used for each input bit.

C. Best Punctured Rate 1/2 Constituent Codes

A rate 2/3 constituent code can be derived by puncturing the parity bit of a rate 1/2 recursive

.................... ,..,:_.._1 _A_ - _'- example, _ pnft'ori'l P [10] A Duncturin_ pattern P has zerosb ybbl=_lllctbl% bUIIVUIUblUIIal bUUb US].ng, xv = • •

where parity bits are removed.

Consider a rate 1/2 recursive systematic convolutional code (1,gl(D)/(go(D)). For an input u(D),

the parity output can be obtained as

u(D)gl(O) (9)
x(D) -- go(D)

_Ve would like to puncture the output x(D) using, for example, the puncturing pattern P[10] (decimation

by 2) and obtain the generator polynomials ho(D), hi(D), and h2(D) for the equivalent rate 2/3 code:

[_o hi(D)

o ho(D)

c = h_(D)

1 ho(D)

105

We note that any polynomial f(D) = _ aiD i, aic GF(2), can be written as

f(D) = f1(0 2) + Of 2(D 2) (10)

where fl(D 2) corresponds to the even power terms of f(D), and Df2(D 2) corresponds to the odd power

terms of f(D). Now, if we use this approach and apply it to the u(D), gl(D), and go(D), then we can

rewrite Eq. (9) as

Xl (D 2) J- Dx2 (D 2) :
(?/'1 (02) J- Du2(D2)) (gll (0 2) J- Dg,2(D2))

9ol (D 2) + D9o2 (D 2)
(11)

where xl(D) and x2(D) correspond to the punctured output x(D) using puncturing patterns P[10] and

P[01], respectively. If we multiply both sides of Eq. (11) by (g01(D 2) + Dg02(D2)) and equate the even
and the odd power terms, we obtain two equations in two unknowns, namely xl(D) and x2(D). For

example, solving for xl (D), we obtain

,,_,,hi(D) , _, h2(D)

Xl(D) = U,[L,) h--_ + u2[L,) h--_
(12)

where ho(D) = go(D) and

hi(D)

h2(D)

= gll(D)gm(D) + Dg12(D)go2(D)]

IDg12(D)gm(D) + Dgla(D)go2(D)

(13)

From the second equation in Eq. (13), it is clear that h2,0 = 0. A similar method can be used to show

that for P[01] we get hl,m = 0. These imply that. the condition of Eq. (6) will be violated. Thus, we have

the following theorem.

Theorem 2. If the parity puncturing pattern is P = [10] or P = [01], then it is impossible to achieve

the upper bound on d2 = dp + 2 for rate 2/3 codes derived by puncturing rate 1/2 codes.

The best rate 1/2 constituent codes with puncturing pattern P = [10] that achieve the largest d2 are
given in Table 4.

Table 4. Best rate 112 punctured

constituent codes.

k Code generator d2 d3 drnin

9o =7 9l =5 4 3 3

9o = 13 gl = 15 5 4 4

go = 23 gl = 37 7 4 4

go = 23 9, = 3l 7 4 4

9o = 23 91 = 33 6 5 5

9o : 23 91:35 6 4 4

go = 23 gl = 27 6 4 4

106

D. Best Rate 1In Constituent Codes

For rate 1/n codes, the upper bound in Eq. (7) for b = 1 reduces to

d_ 5 (n - 1)(2 m-1 + 2)

This upper bound was originally derived in [5], where the best rate 1/2 constituent codes meeting the

bound were obtained. Here we present a simple proof based on our previous general result on rate b/n

codes. Then we obtain the best rate 1/3 and 1/4 codes.

Theorem 3. For rate 1/n recursive systematic convolutional codes with primitive feedback, we have

d_ _ (n - 1)(2 m-1 + 2)

Proof. Consider a rate 1/n code, shown in Fig. 3. In this figure, go(D) is assumed to be a primitive

polynomial. As discussed above, the output weight of the zero-input loop for parity bits is 2 m-1 inde-

pendent of the choice of g_(D), i = 1, 2,..-, n - 1, provided that g_(D) ¢ 0 and that gi(D) ¢ go(D), by

the shift-and-add and balance properties of ML LFSRs. If S(D) represents the state polynomial, then

we can enter the zero-input loop only at state SI(D) = 1 and leave the loop to the all-zero state at state

$2""-1(D) = D m-1. The ith parity output on the transition S2'"-I(D) --, Sl(D) with a zero input bit is

xi = gio + gi,m

If gio = 1 and gi,m = 1 for i = 1, • • •, n - 1, the output weight of the encoder for that transition is zero.

The output weight due to the parity bits when entering and leaving the zero-input loop is (n - 1) for

each case. In addition, the output weight of the zero-input loop will be (n - 1)2 m-1 for (n - 1) parity

bits. Thus, we established the upper bound on d_ for rate 1/n codes. O

We obtained the best rate 1/3 and 1/4 codes without parity repetition, as shown in Tables 5 and 6,

where d2 = d p + 2 represents the minimum output weight given by weight-2 data sequences. The best

rate 1/2 constituent codes are given by go and gl in Table 5, as was also reported in [5].

Table 5. Best rate 1/3 constituent codes.

k Code generator d2 d3 drain

2 go =3 gl = 2 g2 = 1 4 oc 4

3 go = 7 gl ":" 5 92 - 3 8 7 7

4 g0 = 13 gl = 17 g2 = 15 14 10 10

5 go = 23 gl = 33 g2 = 37 22 12 10

go = 23 gl = 25 g2 = 37 22 11 11

107

Table6.Bestrate1/4constituentcodes.

k Code generator d2 d3 drain

go = 13 gl = 17 g2 = 15 g3 = 11 20 12 12

go = 23 gl = 35 g2 = 27 g3 = 37 32 16 14

go = 23 g] =33 g2 =27 g3 =37 32 16 14

go = 23 gl =35 g2 =33 g3 =37 32 16 14

go = 23 gl = 33 g2 = 37 ga = 25 32 15 15

E. Recursive Systematic Convolutional Codes With a Nonprimitive Feedback Polynomial

So far, we assumed that tile feedback polynomial for recursive systematic convolutional code is a

primitive polynomial. We could ask whether it is possible to exceed the upper bound given in Theorem 1

and Corollary 1 by using a nonprimitive polynomial. The answer is negative, thanks to a new theorem

by Solomon W. Golomb (Appendix).

Theorem 4.1 For any rate 1/n linear recursive systematic convolutional code generated by a non-

primitive feedback polynomial, the upper bound in Theoreln 3 cannot be achieved, i.e.,

d_ < (,,_- 1)(2 m _+ 2)

Proof. Using the results of Golomb (see the Appendix) for a nonprimitive feedback polynomial, there

are more than two cycles (zero-input loops) in LFSR. The "zero cycle" has weight zero, and the weights

of other cycles are nonzero. Thus, the weight of each cycle due to the results of the Appendix is strictly

less than ('n - 1)2 m-1. If we enter from the all-zero state with input weight-1 to one of the cycles of the

shift register, then we have to leave the same cycle to the all-zero state with input weight-l, as discussed

in Theorem 1. Thus, d_ < (n - 1)(2 1 + 2). _3

Theorem 5. For any rate b/b + 1 linear recursive systematic convolutional code generated by a

nonprimitive feedback polynomial, the upper bound in Theorem 1 cannot be exceeded, i.e.,

Proof. Again using the results of the Appendix, there is a "zero cycle" with weight zero and at least

two cycles with nonzero weights, say q cycles with weights wl, w2,'", wq. The sum of the weights of all

cycles is exactly 2 "_-1, i.e., _ 'wi = 2 m-1. For a b/b + 1 code, we have b weight-1 symbols. Suppose that

with b_ of these weight-1 symbols we enter from the all-zero state to the ith cycle with weight w i; then we

have to leave tim same cycle to the all-zero state with the same b, symbols for i = 1, 2, • • •, q, such that

bi = b. Based on the discussion in the proof of Theorem 1, the largest achievable nfininmm output

weight of codewords corresponding to weight-2 sequences is min(uq/b_, w.2/b,2,.", 'wq/bq) q- 2. But it is

ea.sy to show that nliIl('wl �hi, 'w2/t)2,..., 'w,Jbq) <_ (_-_. 'wi/Y_. bi) = 2 m-- 1/b.

_'l'he proofs of Theorems 4 and 5 are based on a res,lt by S. W. Golomb (see the Appendix), U,fiversity of Southern
Califl_rma, Los Angeles, California, 1995. Theorem 4 and Corollary 2 were proved for more general ca.ses when the

code is generaled by nmltiple LFSRs by R.. J. MeFliece, Communications Systems and Research Section, ,let Propulsion

Laboratory, Pasadena, California, and California Institute of Technology, Pasadena, California, 1995, using a state-space

approach.

108

Corollary 2. For any rate bin linear recursive systematic convolutional code generated by a non-

primitive feedback polynomial, the upper bound in Corollary 1 cannot be exceeded.

Proof. The proof is similar to the Proof of Theorem 5, but now _ wi = (n - b)2 m-1.

Lok = 2pyok

Llk = log

L2k = log

L3k = log

}-_u:_k =1 P(Yl lu) 1-Ij#k e_j (L,,_+L_ +L_:,)

_u:uk=0 P(Yl lu) [Ij#k c_j(L"j+L:j+L'_")

Eu:uk=l P(y2lu) [Ij#k euJ(L')J-_-LlJ-[-L3J)

-:_:=0 P(Y2I u) [Ij#k e_J(L"_+L'_+L_)

Eu:u/, =1 P(Y31 u) l-[j#k eu_(L_"J+L'"J+L2_)

_-_u:_k =0 P(Y3 lu)[Ij#k e_:' (L,,j _VLlj-._L2j)

for k = 1, 2,.-., N. In Eq. (14), Lik represents extrinsic information and Yi, i = 0, 1, 2, 3 are the received

observation vectors corresponding to x_, i = 0, 1, 2, 3 (see Fig. 1), where p = _/No, if we assume

the channel noise samples have unit variance per dimension. The final decision is then based on

Lk = gok + glk -_- L2k -_- L3k

which is passed through a hard limiter with a zero threshold.

The above set of nonlinear equations is derived from the optimum bit decision rule, i.e.,

E,:_,=I P(yoIu)P(Yxlu)P(y21u)P(Y31 u)

Lk = log v" P(y_ ,,)P(y, u)P(votu_P(v_ u)
/---¢U:U/,,=O * _ _ - * x_ -, * ,

using the following approximation:

N eutLi_:

P(ulYi) _ H 1 + e Lk
k=l

(17)

Note that, in general, P(uly_) is not separable. The smaller the Kullback cross entropy [3,17] between

right and left distributions in Eq. (17), the better is the approximation and, consequently, the closer is

turbo decoding to the optimum bit decision.

109

(15)

(16)

(14)

IV. Turbo Decoding for Multiple Codes

In [9] we described a new turbo decoding scheme for q codes based on approximating the optimum

bit decision rule. The scheme is based on solving a set of nonlinear equations given by (q = 3 is used to

illustrate the concept)

Weattemptedto solvethenonlinearequationsin Eq.(14)for L1, !_2, and L3 by using the iterative

procedure

L (re+l) = a_)log Eu:uk=l P(Yll u) I]y#k e'_J(L"J+L_I_+L_7')lk (18)- -(-0 -(m)

_-_u:u_:=oP(yllu)[Ijekeuj(L"j+L2J +LaJ)

for k = 1, 2,..- N, iterating on m. Similar recursions hold for ?(m) and _.(m) The gain c_ m) should_2k _3k "

be equal to one, but we noticed experimentally that better convergence can be obtained by optimizing

this gain for each iteration, starting from a value less than 1 and increasing toward 1 with the iterations,

as is often done in simulated annealing methods. We start the recursion with the initial condition 2

_0) = 1_0) = _,_0) = !_0. For the computation of Eq. (18), we use a modified MAP algorithm 3 with

permuters (direct and inverse) where needed, as shown in Fig. 4. The MAP algorithm [1] always starts

and ends at the all-zero state since we always terminate the trellis as described in [8]. We assumed 7rl = I

(identity); however, any rq can be used. The overall decoder is composed of block decoders connected

as in Fig. 4, which can be implemented as a pipeline or by feedback. In [10] and [11], we proposed an
alternative version of the above decoder that is more appropriate for use in turbo trellis-coded modulation,

i.e., set L0 = 0 and consider Y0 as part of Yr. If the systematic bits are distributed among encoders, we

use the same distribution for Y0 among the MAP decoders.

_-0

/..3(m)

L2(m)

_ 11;1 _ _ OR . _'_ 7_1-1l_ _ + 1)

__ SOVA1 , , ..k--

t..1 (m)

[-3(m)

L2(m)

L 1(m)

/..3(m + 1)

__[__ DECODED BITS

Fig. 4. Multiple turbo decoder structure.

2 Note that tile components of the [,i's corresponding to the tail bits, i.e., Lik for k = N + 1,..., N + Mi, are set to zero

for all iterations.

3 Tile modified MAP algorithm is described in S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, "Soft-Output

Decoding Algorithms in Iterative Decoding of Parallel Concatenated Convolutional Codes," submitted to ICC '96.

110

At this point, further approximation for turbo decoding is possible if one term corresponding to a

sequence u dominates other terms in the summation in the numerator and denominator of Eq. (18).

Then the summations in Eq. (18) can be replaced by "maximum" operations with the same indices, i.e.,

replacing _u:_,._:=i with ulnaxi for i = 0, 1. A similar approximation can be used for L2k and L3k in

Eq. (14). This suboptimum decoder then corresponds to a turbo decoder that uses soft output Viterbi

(SOVA)-type decoders rather than MAP decoders. Further approximations, i.e., replacing _ with max,
can also be used in the MAP algorithm. 4

A. Decoding Multiple Input Convolutional Codes

If the rate b/n constituent code is not equivalent to a punctured rate 1/n' code or if turbo trellis-coded

modulation is used, we can first use the symbol MAP algorithm 5 to compute the log-likelihood ratio of
a symbol u = ul, u2, ..., Ub given the observation y as

A(u) = log P(uIY----_)
P(0ly)

where 0 corresponds to the all-zero symbol. Then we obtain the log-likelihood ratios of the jth bit within
the symbol by

L(uj) = log _-_u:_,=l cA(u)
_--_u:u_ =0 cA(u)

In this way, the turbo decoder operates on bits, and bit, rather than symbol, interleaving is used.

V. Performance and Simulation Results

The BER performance of these codes was evaluated by using transfer function bounds [4,6,12]. In [12],
it was shown that transfer function bounds are very useful for SNRs above the cutoff rate threshold and

that they cannot accurately predict performance in the region between cutoff rate and capacity. In this
region, the performance was computed by simulation.

Figure 5 shows the performance of turbo codes with m iterations and an interleaver size of N = 16,384.

r'Pl_ _C_ll ;_ c_o are used examples:A-£1% LVJ.IU ¥¥ 1£11_ uu_o as

(1) Rate 1/2 Turbo Codes.

Code A: Two 16-state, rate 2/3 constituent codes are used to construct a rate 1/2 turbo

code as shown in Fig. 6. The (worst-case) minimum codeword weights, di, corresponding

to a weight-/ input sequence for this code are d_f=14, d3=7, d4=8, d5=5=dmi_, and
d6=6.

4 Ibid.

5 Ibid.

111

Code B: A rate 1/2 turbo code also was constructed by using a differential encoder and a

32-state, rate 1/2 code, as shown in Fig. 7. This is an example where the systematic bits

for both encoders are not transmitted. The (worst-case) minimum codeword weights, di,

corresponding to a weight-/input sequence for this code are d_f=19, d4=6=d,_i_, d6=9,

ds=8, and d10=11. The output weights for odd i are large.

(2) Rate 1/3 Turbo Code.

Code C: Two 16-state, rate 1/2 constituent codes are used to construct a rate 1/3 turbo

code as shown in Fig. 8. The (worst-case) minimum codeword weights, di, corresponding

to a weight-/ input sequence for this code are def=22, d3 = 11, d4=12, d5 = 9 = dmi_,

d6=14, and d7=15.

(3) Rate 1/4 Turbo Code.

Code D: Two 16-state, rate 1/2 and rate 1/3 constituent codes are used to construct

a rate 1/4 turbo code, as shown in Fig. 9, with d_f = 32, d3 = 15 = d_i_, d4 = 16,

d5 = 17, d6 = 16, and d7 = 19.

(4) Rate 1/15 Turbo Code.

Code E: Two 16-state, rate 1/8 constituent codes are used to construct a rate 1/15

turbo code, (1, g l �go, g2/go, g3 �go, g4 �go, g5 �go, g6 �go, g7 �go) and (gl/go, g2 �go, .q3�go, g4 /

9o, 95/90, g6/go, 97/9o), with 90 = (23)octal, gl = (21)octal, g2 = (25)octal, g3 = (27)octaZ,

g4 = (31)oaaZ, g5 = (33)octal, g6 = (35)o_tal, and g7 = (37)octal. The (worst-case)
minimum codeword weights, di, corresponding to a weight i input sequence for this (:ode

are d_/=142, d3=39=d_,_, d4=48, d5=45, d6=50, and d7=63.

The simulation performance of other codes reported in this article is still in progress.

100

i0-I

10-2

I ' I ' I ' I ' I ' I ' l ' t ' I ' I ' 1t

I_ CODE C CODE ARATE = 1/3 RATE = 1/2
CODE F m = 1

tm=12"RATE=1/15'__ m=12_ " -__

CODE
RATE = 1/2

CODE D m = 18
RATE = 1/4

m=13

10-6 _ I , I I I I I I l I , I J 1

-1.0 -0.8 -0.6 -0.4 --0.2 0.0 0.2 0.4 0.6 0.8 1.0

IT
LU 10 -3
rn

10--4

10-5

Eb/N O, dB

Fig. 5. Performance of turbo codes.

112

u2

Ul

A

A B

A

Fig. 6. Rate 1/2 turbo code constructed from two codes (h 0 = 23, h I = 35, h2 = 33).

DIFFERENTIAL ENCODER
INPUT DATA

l? U
16,384-bit

INTERLEAVER

r v_k,.,. J

Fig. 7. Rate 1/2 turbo code constructed from a differential encoder and code
(go = 67, gl = 73).

ll-

VI. Turbo Trellis-Coded Modulation

A pragmatic approach for turbo codes with multilevel modulation was proposed in [16]. Here we

propose a different approach that outperforms the results in [16] when M-ary quadrature amplitude

modulation (_,I-QAM) or M-ary phase shift keying (MPSK) modulation is used. A straightforward

method for the use of turbo codes for multilevel modulation is first to select a rate b/(b + 1) constituent

code, where the outputs are mapped to a 25+l-level modulation based on Ungerboeck's set partitioning

method [21] (i.e., we can use Ungerboeck's codes with feedback). If MPSK modulation is used, for every b

bits at the input of the turbo encoder, we transmit two consecutive 25+1 phase-shift keying (PSK) signals,

one per each encoder output. This results in a throughput of b/2 bits/s/Hz. If M-QAM modulation is

113

INPUT DATA

16,384-bit

NTERLEAVER

Fig. 8. Rate 113 turbo code constructed from two identical codes
(go = 23, gl = 33).

INPUT DATA
IB

16,384-bit
INTERLEAVER

Fig. 9. Rate 114turbo code constructed from two codes
(go = 23, gl = 33) and (go = 23, gl = 37, g2 = 25).

used, we map the b + 1 outputs of the first component code to the 2 b+l in-phase levels (I-channel) of a

22b+2-QAM signal set and the b + 1 outputs of the second component code to the 2 b+l quadrature levels

(Q-channel). The throughput of this system is b bits/s/Hz.

First, we note that these methods require more levels of modulation than conventional trellis-coded

modulation (TCM), which is not desirable in practice. Second, the input information sequences are used

twice in the output modulation symbols, which also is not desirable. An obvious remedy is to puncture

the output symbols of each trellis code and select the puncturing pattern such that the output symbols

of the turbo code contain the input information only once. If the output symbols of the first encoder are

114

punctured, for example as 101010..-, the puncturing pattern of the second encoder must be nonuniform

to guarantee that all information symbols are used, and it depends on the particular choice of interleaver.
Now, for example, for 25+1 PSK, a throughput b can be achieved. This method has two drawbacks: It

complicates the encoder and decoder, and the reliability of punctured symbols may not be fully estimated

at the decoder. A better remedy, for rate b/(b + 1) (b even) codes, is discussed in the next section.

A. A New Method to Construct Turbo TCM

For a q = 2 turbo code with rate b/(b + 1) constituent encoders, select the b/2 systematic outputs and

puncture the rest of the systematic outputs, but keep the parity bit of the b/(b + 1) code (note that the

rate b/(b + 1) code may have been obtained already by puncturing a rate 1/2 code). Then do the same

to the second constituent code, but select only those systematic bits that were punctured in the first

encoder. This method requires at least two interleavers: The first interleaver permutes the bits selected

by the first encoder and the second interleaver those punctured by_the first encoder. For MPSK (or
M-QAM), we can use 21+b/2 PSK symbols (or 21+5/2 QAM symbols) per encoder and achieve throughput

b/2. For M-QAM, we can also use 21+5/2 levels in the I-channel and 21+5/2 levels in the Q-channel and

achieve a throughput of b bits/s/Hz. These methods are equivalent to a multidimensional trellis-coded

modulation scheme (in this case, two multilevel symbols per branch) that uses 25/2 × 21+5/2 symbols per

branch, where the first symbol in the branch (which depends only on uncoded information) is punctured.
Now, with these methods, the reliability of the punctured symbols can be fully estimated at the decoder.

Obviously, the constituent codes for a given modulation should be redesigned based on the Euclidean

distance. In this article, we give an example for b = 2 with 16-QAM modulation where, for simplicity,

we can use the 2/3 codes in Table 1 with Gray code mapping. Note that this may result in suboptimum

constituent codes for multilevel modulation. The turbo encoder with 16 QAM and two clock-cycle trellis

termination is shown in Fig. 10. The BER performance of this code with the turbo decoding structure
for two codes discussed in Section IV is given in Fig. 11. For permutations _h and _r2, we used S-random

permutations [9] with S = 40 and S = 32, with a block size of 16,384 bits. For 8 PSK, we used two

16-state, rate 4/5 codes given in Section V to achieve throughput 2. The parallel concatenated trellis

codes with 8 PSK and two clock-cycle trellis termination is shown in Fig. 12. The BER performance of

this code is given in Fig. 13. For 64 QAM, we used two 16-state, rate 4/5 codes given in Section V to

achieve throughput 4. The parallel concatenated trellis codes with 64 QAM and two clock-cycle trellis
termination is shown in Fig. 14. The BER performance of this code is given in Fig. 15. For permutations

nl, 7r2, 7r3, and 7r4 in Figs. 10, 12, and 14, we used random permutations, each with a block size of 4096

bits. As was discussed above, there is no need to use four permutations; two permutations suffice, and

they may even result in a better performance. Extension of the described method for construction of

turbo TCM based on Euclidean distance is straightforward. 6

VII. Conclusions

In this article, we have shown that powerful turbo codes can be obtained if multiple constituent codes

are used. We reviewed an iterative decoding method for multiple turbo codes by approximating the

optimum bit decision rule. We obtained an upper bound on the effective free Euclidean distance of b/n

codes. We found the best rate 2/3, 3/4, 4/5, and 1/3 constituent codes that can be used in the design
of multiple turbo codes. We proposed new schemes that can be used for power- and bandwidth-efficient
turbo trellis-coded modulation.

6This is discussed in S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, "Parallel Concatenated Trellis Coded Modu-
lation," submitted to ICC '96.

115

u2

Ul

A

A B

A

A B

_o t D

B

QAM

L_

Fig. 10. Turbo trellis-coded modulation, 16 QAM, 2 bits/s/Hz.

10-1

10 -2

10 -3
rn

10-4

10-5

' i ' I ' I ' I ' I ' I '

m=4 -

m=5

2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2

Eb/ No,dB

Fig. 11. BER performance of turbo trellis-coded modulation,
16 QAM, 2 bits/s/Hz.

116

u2

Ul

8 PSK
×

8 PSK

i
I

Fig. 12. Parallel concatenated trellis-coded modulation, 8 PSK, 2 bits/s/Hz.

10-2

10-3

IT

LU 10--4
rn

10 -5

10 -6- , _

3.3 3.8

' I ' I ' I

ift 5

3.4 3.5 3.6 3.7

BIT SNR, dB

Fig. 13. BER performance of parallel con-
catenated trellis-coded modulation, 8 PSK,
2 bits/s/Hx.

117

u4 A

u2

Ul

64
QAM

Fig. 14. Parallel concatenated trellis-coded modulation, 64 QAM, 4 bits/s/Hz.

n-
UJ

m

10-1

10 -2

10 -3

10 -4

10 -5

10-6

7.0

' I i I i I ' I i I i

m---5

m=6

..I

I I i I I I i I i I i
7.1 7.2 73 7.4 7.5 7.6

Eb/ NO, da

Fig. 15. BER performance of parallel concatenated trellis-
coded modulation, 64 QAM, 4 bits/s/Hz.

118

Acknowledgments

The authors are grateful to S. Dolinar and R. J. McEliece for their helpful com-

ments throughout this article, to S. Benedetto and G. Montorsi for their helpful

comments on the turbo trellis-coded modulation section, and special thanks to

S. W. Golomb for his contribution, as reported in the Appendix.

References

[1] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, "Optimal Decoding of Linear
Codes for Minimizing Symbol Error Rate," IEEE Trans. Inform. Theory, vol.

IT-20, pp. 284-287, 1974.

[2] G. Battail, C. Berrou, and A. Glavieux, "Pseudo-Random Recursive Convolu-
tional Coding for Near-Capacity Performance," Comm. Theory Mini-Conference,

GLOBECOM '93, Houston, Texas, December 1993.

[3] G. Battail and R. Sfez, "Suboptimum Decoding Using the Kullback Principle,"

Lecture Notes in Computer Science, vol. 313, pp. 93-101, 1988.

[4] S. Benedetto, "Unveiling Turbo Codes," IEEE Communication Theory Work-
shop, Santa Cruz, California, April 23-26, 1995.

[5] S. Benedetto and G. Montorsi, "Design of Parallel Concatenated Convolutional

Codes," to be published in IEEE Transactions on Communications, 1996.

[6] S. Benedetto and G. Montorsi, "Performance Evaluation of Turbo-Codes," Elec-
tronics Letters, vol. 31, no. 3, pp. 163-165, February 2, 1995.

[7] C. Berrou, A. Glavieux, and P. Thitimajshima, "Near Shannon Limit Error-

Correcting Coding: Turbo Codes,"Proc. 1993 IEEE International Conference
on Communications, Geneva, Switzerland, pp. 1064-1070, May 1993.

[8] D. Divsalar and F. Pollara, "Turbo Codes for Deep-Space Communications,"
The Telecommunications and Data Acquisition Progress Report 42-120, October-

December 1994, Jet Propulsion Laboratory, Pasadena, California, pp. 29-39,

February 15, 1995, URL http://edms-www.jpl.nasa.gov/tda/progress-report/

42-120/120D.pdf.

[9] D. Divsalar and F. Pollara, "Multiple Turbo Codes for Deep-Space Communica-
tions," The Telecommunications and Data Acquisition Progress Report J2-121,

T X,r 1 _ ,n_" T_ 1 :-- T _1 ____ T_____I /'_I.'£ :- _

Janua'ly-lvl a'lut I Pyo, ZeL I_IUpUI_IUII l_i:tUUl _:LbUI 3/, I- i:tbi:l_Uglti;L, kJI::LII/UI lilt:L, pp. uu-

77, May 15, 1995, URL http://edms-www.jpl.nasa.gov/tda/progress_report/

42-121/121T.pdf.

[10] D. Divsalar and F. Pollara, "Turbo Codes for PCS Applications," Proceedings of

IEEE ICC'95, Seattle, Washington, pp. 54-59, June 1995.

[11] D. Divsalar and F. Pollara, "_Ylrbo Codes for Deep-Space Communications,"
IEEE Communication Theory Workshop, Santa Cruz, California, April 23-26,
1995.

[12] D. Divsalar, S. Dolinar, R. J. McEliece,and F. Pollara, "Transfer Function
Bounds on the Performance of Turbo Codes," MILCOM 95, San Diego, Cali-

fornia, November 5-8, 1995.

119

[13] S. Dolinar and D. Divsalar, "Weight Distributions for Turbo Codes Using Ran-
dom and Nonrandom Permutations," The Telecommunications and Data Ac-

quisition Progress Report 42-122, April June i995, Jet Propulsion Laboratory,

Pasadena, California, pp. 56-65, August 15, 1995, URL http://edms-www.jpl.

nasa.gov/tda/progress_report/42-122/122B.pdf.

[14] S. W. Golomb, Shift Register Sequences, Revised Edition, Laguna Beach, Cali-
fornia: Aegean Park Press, 1982.

[15] J. Hagenauer and P. Robertson, "Iterative (Turbo) Decoding of Systematic Con-
volutional Codes With the MAP and SOVA Algorithms," Proc. of the ITG Con-

ference on Source and Channel Coding, Frankfurt, Germany, pp. 1--9, October
1994.

[16] S. LeGoff, A. Glavieux, and C. Berrou, "Turbo Codes and High Spectral Ef-
ficiency Modulation," Proceedings of IEEE ICC'94, New Orleans, Louisiana,

pp. 645-651, May 1 5, 1994.

[17] M. Moher, "Decoding Via Cross-Entropy Minimization," Proceedings GLOBE-
COM '93, Houston, Texas, pp. 809-813, December 1993.

[18] A. S. Barbulescu and S. S. Pietrobon, "Terminating the r_ellis of Turbo-Codes
in the Same State," Electronics Letters, vol. 31, no. 1, pp. 22 23, January 1995.

[19] P. Robertson, "Illmninating the Structure of Code and Decoder of Parallel Con-
catenated Recursive Systematic (Turbo) Codes," Pwceedings GLOBECOM '94,

San Francisco, California, pp. 1298-1303, December 1994.

[20] G. D. Forney, Jr., "Convohltional Codes I: Algebraic Structure," IEEE Trans-
actions on Infor_rnation Theory, vol. IT-16, pp. 720 738, November 1970.

[21] G. Ungerboeck, "Channel Coding With Multi-Level Phase Signals," IEEE Trans-
actions on InfoT"rnation Theory, vol. IT-28, pp. 55-67, January 1982.

120

Appendix

A Bound on the Weights of Shift Register Cycles I

I. Introduction

A maximum-length linear shift register sequence--a pseudonoise (PN)-sequence or a maximal length

(m)-sequence--of degree m has period p = 2m - 1, with 2m-1 ones and 2m-1 - 1 zeroes in each period.

Thus, the weight of a PN cycle is 2m-1. From a linear shift register whose characteristic polynomial is

reducible, or irreducible but not primitive, in addition to the "zero-cycle" of period 1, there are several

other possible cycles, depending on the initial state of the register, and each of these cycles has a period
less than 2m - 1.

The question is whether it is possible for any cycle, from any linear shift register of degree m, to have

a weight greater than 2m-1. We shall show that the answer is "no" and that this result does not depend

on the shift register being linear.

II. The Main Result

Let S be any feedback shift register of length m, linear or not. We need not even specify that the

shift register produce "pure" cycles, without branches. We will use only the fact that each state of the

shift register has a unique successor state. For any given initial state, we define the length L of the string

starting from that state to be the number of states, counting from the initial state, prior to the second

appearance of any state in the string. (In the case of branchless cycles, this is the length of the cycle with

the given initial state.)

The string itself is this succession of states of length L. The corresponding string sequence is the
sequence of O's and l's appearing in the right-most position of the register (or any other specific position

of the register that has been agreed upon) as the string goes through its succession of L states.

Theorem 1. From a feedback shift register S of length m, the maxinmm number of l's that can
appear in any string sequence is 2m- 1.

Proof. There are 2m possible states of the shift register S altogether. In any fixed position of the shift
register, 2 "_- 1 of these states have a 0 and 2m- 1 states have a 1. In a string of length L, all L of the states

are distinct, and in any given position of the register, !_either 0 nor 1 can occur more than 2m-1 times.

In particular, the weight of a string sequence from a register of length m cannot exceed 2 m-1.

Corollary 1. No cycle from a feedback shift register of length m can have weight exceeding 2 ra-1.

1s. w. Oolomb, personal communication, University of Southern California, Los Angeles, California, 1995.

121

